Microfluidics for bacterial chemotaxisw

نویسندگان

  • Tanvir Ahmed
  • Thomas S. Shimizu
  • Roman Stocker
چکیده

Microfluidics is revolutionizing the way we study the motile behavior of cells, by enabling observations at high spatial and temporal resolution in carefully controlled microenvironments. An important class of such behavior is bacterial chemotaxis, which plays a fundamental role in a broad range of processes, including disease pathogenesis, biofilm formation, bioremediation, and even carbon cycling in the ocean. In biophysical research, bacterial chemotaxis represents a powerful model system to understand how cells and organisms sense and respond to gradients. Using microfluidics to study chemotaxis of free-swimming bacteria presents experimental challenges that are distinct from those arising in chemotaxis studies of surface-adherent cells. Recently, these challenges have been met by the development of advanced microdevices, able to generate flow-free, steady gradients of arbitrary shape. Much attention to date has been focused on tool development. Yet, we are now at an exciting turning point where science begins to balance technology. Indeed, recent microfluidic studies provided new insights on both the mechanisms governing bacterial gradient sensing (e.g. tuning of response sensitivity, discrimination between conflicting gradients) and the large-scale consequences of chemotaxis (e.g. in the oceans). Here we outline the principles underlying recently proposed gradient generators for bacterial chemotaxis, illustrate the advantage of the microfluidic approach through selected examples, and identify a broader set of scientific questions that may now be addressed with this rapidly developing technology. The latest generation of microfluidic gradient generators, in particular, holds appeal for both biophysicists seeking to unravel the fundamental mechanisms of bacterial chemotaxis, and ecologists wishing to model chemotaxis in realistic environments. Time is ripe for a deeper integration between technology and biology in fully bringing to bear microfluidics on studies of this fascinating microbial behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics analysis of microparticles in inertial microfluidics for biomedical applications

Inertial microfluidics-based devices have recently attracted much interest and attention due to their simple structure, high throughput, fast processing and low cost. They have been utilised in a wide range of applications in microtechnology, especially for sorting and separating microparticles. This novel class of microfluidics-based devices works based on intrinsic forces, which cause micropa...

متن کامل

Enzyme Inhibition in Microfluidics for Re-engineering Bacterial Synthesis Pathways

Title of Thesis: ENZYME INHIBITION IN MICROFLUIDICS FOR RE-ENGINEERING BACTERIAL SYNTHESIS PATHWAYS Dean Larios Berlin, Masters of Science, 2009 Directed By: Professor Gary W. Rubloff Department of Materials Science and Engineering and the Institute for Systems Research Enzyme-functionalized biological microfluidic (EF-BioMEMS) systems are an emerging class of lab-on-chip devices that manipulat...

متن کامل

Impact of microfluidic processing on bacterial ribonucleic acid expression.

Bacterial transcriptomics is widely used to investigate gene regulation, bacterial susceptibility to antibiotics, host-pathogen interactions, and pathogenesis. Transcriptomics is crucially dependent on suitable methods to isolate and detect bacterial RNA. Microfluidics offer ways of creating integrated point-of-care systems, analysing a sample from preparation, and RNA isolation to detection. A...

متن کامل

Signaling-Mediated Bacterial Persister Formation

Here we show that bacterial communication through indole signaling induces persistence, a phenomenon in which a subset of an isogenic bacterial population tolerates antibiotic treatment. We monitor indole-induced persister formation using microfluidics and identify the role of oxidative-stress and phage-shock pathways in this phenomenon. We propose a model in which indole signaling 'inoculates'...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010